top of page
falotecynicar

3D FLASH Yosino Full 192



Demand has greatly expanded his practice in the course of his career. One example is his series The Dailies, for which the artist converted snapshots taken with his mobile phone camera into models and photographed them. The images might show what appears to be a stubbed-out cigarette butt or a washing machine full of colored clothes. Demand thinks of these poetically condensed, laconic and often humorous everyday pictures as visual haikus. Another series known as the Model Studies draws its imagery from found architectural models, including those of American architect John Lautner, the Japanese architecture firm SANAA, and Austrian architect Hans Hollein. The resulting photographs are stage sets reflecting an unrealized legacy of postmodern architecture.




3D FLASH Yosino Full 192



If you sign up to receive our newsletter, we will save your email address, full name, and any other information you provide in order to send you more personalized content. We may track how often the newsletters are opened, and whether the links within them have been opened. You can revoke your consent by unsubscribing from the newsletter at any time.


We compare four optical coherence tomography techniques for noninvasive visualization of microcapillary network in the human retina and murine cortex. We perform phantom studies to investigate contrast-to-noise ratio for angiographic images obtained with each of the algorithm. We show that the computationally simplest absolute intensity difference angiographic OCT algorithm that bases only on two cross-sectional intensity images may be successfully used in clinical study of healthy eyes and eyes with diabetic maculopathy and branch retinal vein occlusion. PMID:26309740


Propagation-based phase contrast x-ray (PBX) imaging yields high contrast images of the lung where airways that overlap in projection coherently scatter the x-rays, giving rise to a speckled intensity due to interference effects. Our previous works have shown that total and regional changes in lung air volumes can be accurately measured from two-dimensional (2D) absorption or phase contrast images when the subject is immersed in a water-filled container. In this paper we demonstrate how the phase contrast speckle patterns can be used to directly measure absolute regional lung air volumes from 2D PBX images without the need for a water-filled container. We justify this technique analytically and via simulation using the transport-of-intensity equation and calibrate the technique using our existing methods for measuring lung air volume. Finally, we show the full capabilities of this technique for measuring regional differences in lung aeration.


Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 21018 m-3. The dissociation degree is of the order of a few percent.


This article describes a high sensitivity spectrophotometer designed to detect the overall extinction of light by a single nanoparticle (NP) in the 10-4-10-5 relative range, using a transmission measurement configuration. We focus here on the simple and low cost scheme where a white lamp is used as a light source, permitting easy and broadband extinction measurements (300-900 nm). Using a microscope, in a confocal geometry, an increased sensitivity is reached thanks to a modulation of the NP position under the light spot combined with lock-in detection. Moreover, it is shown that this technique gives access to the absolute extinction cross-sections of the single NP provided that the incident electromagnetic field distribution experienced by the NP is accurately characterized. In this respect, an experimental procedure to characterize the light spot profile in the focal plane, using a reference NP as a probe, is also laid out. The validity of this approach is discussed and confirmed by comparing experimental intensity distributions to theoretical calculations taking into account the vector character of the tightly focused beam. The calibration procedure permitting to obtain the absolute extinction cross-section of the probed NP is then fully described. Finally, the force of the present technique is illustrated through selected examples concerning spherical and slightly elongated gold and silver NPs. Absolute extinction measurements are found to be in good consistency with the NP size and shape independently obtained from transmission electron microscopy, showing that spatial modulation spectroscopy is a powerful tool to get an optical fingerprint of the NP.


We present precise and absolute measurements of full complex third order optical susceptibility on different fused silica and original glasses composed of tellurium, titanium, niobium erbium. These materials are designed to be the key point for applications ranging form high power laser systems to optoelectronics, their nonlinear index of refraction is a major property and thus must be accurately known. Due to the accuracy and sensitivity of our technique, we have been able to find a large dispersion (more than 30%) of the non linear index of fused silica glasses as a function of their processing mode. On the other hand, measurements on tellurium glasses have shown very strong nonlinearities (40 times higher than fused silica), to be linked to the configurations of their cations and anions. Although the titanium and niobium glasses are less nonlinear, they can be promising matrices for addition of luminescent entities like erbium leading to very interesting laser amplification materials. The experimental set-up is a collinear pump-probe (orthogonally polarized) experiment using transient absorption technique. It is built with around a 100 femtosecond laser oscillator. A fast oscillating delay between the pump and the probe allows us to measure the electronic nonlinearity in quasi real-time. This experiment has the following specifications: an absolute measurement accuracy below 10% mainly due to the laser parameters characterization, a relative measurement accuracy of 1% and a resolution less than 5.10-24m2/V2(50 times less than fused silica).


Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365


Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement.


This paper presents a highly sensitive terahertz (THz) calorimeter developed using a magnetically loaded epoxy as a broadband absorber. The reflection loss of the absorber, which has a pyramidally textured surface, is less than 0.04, as determined using a THz time-domain spectrometer and a vector network analyzer. The THz calorimeter successfully enabled the measurement of the absolute THz power from a photomixer at microwatt levels at room temperature. The measurement uncertainties at a 95% confidence level were 6.2% for 13 μW at 300 GHz and 5.6% for 1.5 μW at 1 THz, respectively. Details of the evaluation and uncertainty analyses are also presented.


The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub 0)/I) and pressure ratio (P/P(sub 0)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and c quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an in- situ intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP)) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available. 2ff7e9595c


1 view0 comments

Recent Posts

See All

Comments


bottom of page